分析下面一段代码的逻辑

1
objectAnimator.start();

他会调用父类的start(),即ValueAnimator,我们分析valueAnimator.start()即可

ValueAnimator:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public void start() {
start(false);
}
private void start(boolean playBackwards) {

...

AnimationHandler animationHandler = getOrCreateAnimationHandler();
animationHandler.mPendingAnimations.add(this);

...

animationHandler.start();
}

ValueAnimator把动画逻辑交给了AnimationHandler。接着看animationHandler.start()

ValueAnimator.AnimationHandler:

1
2
3
4
5
6
7
8
9
public void start() {
scheduleAnimation();
}
private void scheduleAnimation() {
if (!mAnimationScheduled) {
mChoreographer.postCallback(Choreographer.CALLBACK_ANIMATION, mAnimate, null);
mAnimationScheduled = true;
}
}

mChoreographer是什么?这追溯到AnimationHandler的创建地方。
首先看AnimationHandler创建的机制
ValueAnimator:

1
2
3
4
5
6
7
8
9
10
11
private static AnimationHandler getOrCreateAnimationHandler() {
AnimationHandler handler = sAnimationHandler.get();
if (handler == null) {
handler = new AnimationHandler();
sAnimationHandler.set(handler);
}
return handler;
}

protected static ThreadLocal<AnimationHandler> sAnimationHandler =
new ThreadLocal<AnimationHandler>();

所以一个线程中只有一个AnimationHandler。

接着看AnimationHandler创建细节

ValueAnimator.AnimationHandler:

1
2
3
private AnimationHandler() {
mChoreographer = Choreographer.getInstance();
}

接着看Choreographer:

Choreographer:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public static Choreographer getInstance() {
return sThreadInstance.get();
}

private static final ThreadLocal<Choreographer> sThreadInstance =
new ThreadLocal<Choreographer>() {
@Override
protected Choreographer initialValue() {
Looper looper = Looper.myLooper();
if (looper == null) {
throw new IllegalStateException("The current thread must have a looper!");
}
return new Choreographer(looper);
}
};

可见Choreographer也是每个线程只有一个,而且他指明了只有在具有looper的线程下才能创建成功,这是因为他会创建一个handler

Choreographer:

1
2
3
4
5
6
7
8
private Choreographer(Looper looper) {
mLooper = looper;
mHandler = new FrameHandler(looper);

...


}

Choreographer.FrameHandler:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
private final class FrameHandler extends Handler {
public FrameHandler(Looper looper) {
super(looper);
}

@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_DO_FRAME:
doFrame(System.nanoTime(), 0);
break;
case MSG_DO_SCHEDULE_VSYNC:
doScheduleVsync();
break;
case MSG_DO_SCHEDULE_CALLBACK:
doScheduleCallback(msg.arg1);
break;
}
}
}

我们再回头看看Choreographer是如何使动画跑起来的:

Choreographer:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public void postCallback(int callbackType, Runnable action, Object token) {
postCallbackDelayed(callbackType, action, token, 0);
}
public void postCallbackDelayed(int callbackType,
Runnable action, Object token, long delayMillis) {
...

postCallbackDelayedInternal(callbackType, action, token, delayMillis);
}

private void postCallbackDelayedInternal(int callbackType,
Object action, Object token, long delayMillis) {
...

synchronized (mLock) {
final long now = SystemClock.uptimeMillis();
final long dueTime = now + delayMillis;
mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);

if (dueTime <= now) {
scheduleFrameLocked(now);
} else {
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
msg.arg1 = callbackType;
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, dueTime);
}
}
}

可以知道他把action存储到了mCallbackQueues数组中的下标为CALLBACK_ANIMATION(1)的CallbackQueue中。

因为delayMillis为0,所以他会发送一个what为MSG_DO_SCHEDULE_CALLBACK的Message到mHandler去处理。

根据上面的what分支看下去

Choreographer:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
void doScheduleCallback(int callbackType) {
synchronized (mLock) {
if (!mFrameScheduled) {
final long now = SystemClock.uptimeMillis();
if (mCallbackQueues[callbackType].hasDueCallbacksLocked(now)) {
scheduleFrameLocked(now);
}
}
}
}
private void scheduleFrameLocked(long now) {
if (!mFrameScheduled) {
mFrameScheduled = true;
if (USE_VSYNC) {
if (DEBUG_FRAMES) {
Log.d(TAG, "Scheduling next frame on vsync.");
}

// If running on the Looper thread, then schedule the vsync immediately,
// otherwise post a message to schedule the vsync from the UI thread
// as soon as possible.
if (isRunningOnLooperThreadLocked()) {
scheduleVsyncLocked();
} else {
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
msg.setAsynchronous(true);
mHandler.sendMessageAtFrontOfQueue(msg);
}
} else {
final long nextFrameTime = Math.max(
mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now);
if (DEBUG_FRAMES) {
Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms.");
}
Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, nextFrameTime);
}
}
}

USE_VSYNC是垂直同步的意思,使得显卡生成帧的速度和屏幕刷新的速度的保持一致。在此不讨论其细节,假设不开启,因为,如果开启的话,后面的流程最终还是和不开启的流程一样的。

接着看MSG_DO_FRAME分支

Choreographer:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
void doFrame(long frameTimeNanos, int frame) {
...

try {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame");

mFrameInfo.markInputHandlingStart();
doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);

mFrameInfo.markAnimationsStart();
doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);

mFrameInfo.markPerformTraversalsStart();
doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);

doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos);
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}

...
}
void doCallbacks(int callbackType, long frameTimeNanos) {
CallbackRecord callbacks;
synchronized (mLock) {
// We use "now" to determine when callbacks become due because it's possible
// for earlier processing phases in a frame to post callbacks that should run
// in a following phase, such as an input event that causes an animation to start.
final long now = System.nanoTime();
callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked(
now / TimeUtils.NANOS_PER_MS);
...
}
try {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, CALLBACK_TRACE_TITLES[callbackType]);
for (CallbackRecord c = callbacks; c != null; c = c.next) {
if (DEBUG_FRAMES) {
Log.d(TAG, "RunCallback: type=" + callbackType
+ ", action=" + c.action + ", token=" + c.token
+ ", latencyMillis=" + (SystemClock.uptimeMillis() - c.dueTime));
}
c.run(frameTimeNanos);
}
} finally {
synchronized (mLock) {
mCallbacksRunning = false;
do {
final CallbackRecord next = callbacks.next;
recycleCallbackLocked(callbacks);
callbacks = next;
} while (callbacks != null);
}
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}

首先取出CALLBACK_ANIMATION对应的CallbackQueue中的actions列表,然后运行。这样,我们就回到了刚开始使用Choreographer时传入的action。

ValueAnimator.AnimationHandler:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
final Runnable mAnimate = new Runnable() {
@Override
public void run() {
mAnimationScheduled = false;
doAnimationFrame(mChoreographer.getFrameTime());
}
};
void doAnimationFrame(long frameTime) {
mLastFrameTime = frameTime;

// mPendingAnimations holds any animations that have requested to be started
// We're going to clear mPendingAnimations, but starting animation may
// cause more to be added to the pending list (for example, if one animation
// starting triggers another starting). So we loop until mPendingAnimations
// is empty.
while (mPendingAnimations.size() > 0) {
ArrayList<ValueAnimator> pendingCopy =
(ArrayList<ValueAnimator>) mPendingAnimations.clone();
mPendingAnimations.clear();
int count = pendingCopy.size();
for (int i = 0; i < count; ++i) {
ValueAnimator anim = pendingCopy.get(i);
// If the animation has a startDelay, place it on the delayed list
if (anim.mStartDelay == 0) {
anim.startAnimation(this);
} else {
mDelayedAnims.add(anim);
}
}
}

// Next, process animations currently sitting on the delayed queue, adding
// them to the active animations if they are ready
int numDelayedAnims = mDelayedAnims.size();
for (int i = 0; i < numDelayedAnims; ++i) {
ValueAnimator anim = mDelayedAnims.get(i);
if (anim.delayedAnimationFrame(frameTime)) {
mReadyAnims.add(anim);
}
}
int numReadyAnims = mReadyAnims.size();
if (numReadyAnims > 0) {
for (int i = 0; i < numReadyAnims; ++i) {
ValueAnimator anim = mReadyAnims.get(i);
anim.startAnimation(this);
anim.mRunning = true;
mDelayedAnims.remove(anim);
}
mReadyAnims.clear();
}

// Now process all active animations. The return value from animationFrame()
// tells the handler whether it should now be ended
int numAnims = mAnimations.size();
for (int i = 0; i < numAnims; ++i) {
mTmpAnimations.add(mAnimations.get(i));
}
for (int i = 0; i < numAnims; ++i) {
ValueAnimator anim = mTmpAnimations.get(i);
if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
mEndingAnims.add(anim);
}
}
mTmpAnimations.clear();
if (mEndingAnims.size() > 0) {
for (int i = 0; i < mEndingAnims.size(); ++i) {
mEndingAnims.get(i).endAnimation(this);
}
mEndingAnims.clear();
}

...
if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
scheduleAnimation();
}
}

ValueAnimator:

1
2
3
4
5
6
private void startAnimation(AnimationHandler handler) {
...
initAnimation();
handler.mAnimations.add(this);
...
}

doAnimationFrame遍历mPendingAnimations,需要执行的ValueAnimator会添加到mAnimations中,遍历mAnimations,然后开始执行真正的动画操作

ValueAnimator:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
final boolean doAnimationFrame(long frameTime) {
...
return animationFrame(currentTime);
}
boolean animationFrame(long currentTime) {
boolean done = false;
switch (mPlayingState) {
case RUNNING:
case SEEKED:
float fraction = mDuration > 0 ? (float)(currentTime - mStartTime) / mDuration : 1f;
...
animateValue(fraction);
break;
}

return done;
}
void animateValue(float fraction) {
fraction = mInterpolator.getInterpolation(fraction);
mCurrentFraction = fraction;
int numValues = mValues.length;
for (int i = 0; i < numValues; ++i) {
mValues[i].calculateValue(fraction);
}
if (mUpdateListeners != null) {
int numListeners = mUpdateListeners.size();
for (int i = 0; i < numListeners; ++i) {
mUpdateListeners.get(i).onAnimationUpdate(this);
}
}
}

animateValue方法就是ValueAnimator的核心

首先根据当前的Interpolator得到对应的fraction。
然后遍历mValues,执行calculateValue。mValues是一个PropertyValuesHolder集合,PropertyValuesHolder存储着需要动态变化的信息,比如方法名的字符串对象”translationX”,这就是我们平时ObjectAnimator.ofFloat提供的方法名啊。执行calculateValue就是利用反射来执行对应的方法(这个细节我还没有仔细看源码),实现真正的动画。
最后遍历监听器并回调。
动画如何结束呢?我们看回去AnimationHandler的doAnimationFrame方法,里面有这么一段代码:

ValueAnimator.AnimationHandler.doAnimationFrame:

1
2
3
4
5
6
7
8
9
10
11
12
13
for (int i = 0; i < numAnims; ++i) {
ValueAnimator anim = mTmpAnimations.get(i);
if (mAnimations.contains(anim) && anim.doAnimationFrame(frameTime)) {
mEndingAnims.add(anim);
}
}
mTmpAnimations.clear();
if (mEndingAnims.size() > 0) {
for (int i = 0; i < mEndingAnims.size(); ++i) {
mEndingAnims.get(i).endAnimation(this);
}
mEndingAnims.clear();
}

ValueAnimator:

1
2
3
4
5
6
7
8
protected void endAnimation(AnimationHandler handler) {
handler.mAnimations.remove(this);
handler.mPendingAnimations.remove(this);
handler.mDelayedAnims.remove(this);
mPlayingState = STOPPED;
mPaused = false;
...
}

可见,一个动画如果没有完成就不会添加到mEndingAnims列表,一旦完成了就会加入,并且会被删除掉。自然这个动画就算结束了。

mAnimations只要不为空,那么就会再次调用scheduleAnimation(),如下

ValueAnimator.AnimationHandler.doAnimationFrame:

1
2
3
if (!mAnimations.isEmpty() || !mDelayedAnims.isEmpty()) {
scheduleAnimation();
}

总结一下:

ValueAnimator创建时,会获取到本线程的一个AnimationHandler,里面包含一个本线程的Choreographer,Choreographer又包含一个handler(所以要求ValueAnimator创建所在的线程必须是具有looper的)。
ValueAnimator通过AnimationHandler执行动画,AnimationHandler又通过Choreographer中的handler进行不断的回调,ValueAnimator收到回调后利用反射机制执行动画操作。
ObjectAnimator作用的对象如果只能在特定的线程里面操作,ObjectAnimator必须在特定的线程创建,这样才能在特定的线程得到Choreographer中的handler的回调。(比如View只能在主线程操作UI更新)

android26的更改

ValueAnimator

1
2
3
4
5
6
7
8
9
10
11
private void start(boolean playBackwards) {
...
addAnimationCallback(0);
...
}
private void addAnimationCallback(long delay) {
if (!mSelfPulse) {
return;
}
getAnimationHandler().addAnimationFrameCallback(this, delay);
}

ValueAnimator.AnimationHandler:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
public void addAnimationFrameCallback(final AnimationFrameCallback callback, long delay) {
if (mAnimationCallbacks.size() == 0) {
getProvider().postFrameCallback(mFrameCallback);
}
if (!mAnimationCallbacks.contains(callback)) {
mAnimationCallbacks.add(callback);
}

if (delay > 0) {
mDelayedCallbackStartTime.put(callback, (SystemClock.uptimeMillis() + delay));
}
}
private AnimationFrameCallbackProvider getProvider() {
if (mProvider == null) {
mProvider = new MyFrameCallbackProvider();
}
return mProvider;
}
private class MyFrameCallbackProvider implements AnimationFrameCallbackProvider {

final Choreographer mChoreographer = Choreographer.getInstance();

@Override
public void postFrameCallback(Choreographer.FrameCallback callback) {
mChoreographer.postFrameCallback(callback);
}

@Override
public void postCommitCallback(Runnable runnable) {
mChoreographer.postCallback(Choreographer.CALLBACK_COMMIT, runnable, null);
}

@Override
public long getFrameTime() {
return mChoreographer.getFrameTime();
}

@Override
public long getFrameDelay() {
return Choreographer.getFrameDelay();
}

@Override
public void setFrameDelay(long delay) {
Choreographer.setFrameDelay(delay);
}
}

原文